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Abstract
The crossing probability in the time direction, πt , is defined for an off-
equilibrium reaction–diffusion system as the probability that the system of
size L is still active at time t, in the finite-size scaling limit. Exact results are
obtained for the diffusion-limited coalescence problem in 1+1 dimensions with
periodic and free boundary conditions using empty interval methods. πt is a
scale-invariant universal function of an effective aspect ratio, L2/Dt , which is
the natural scaling variable for this strongly anisotropic system.

PACS numbers: 05.40.−a, 05.70.Ln, 82.20.−w

1. Introduction

The study of crossing probabilities for standard percolation has been the subject of much
interest during the last decade [1–16] (for a recent introductory review see [17]).

In two dimensions, the crossing probability may be defined as the probability π to have at
least one cluster joining two opposite edges of a rectangular-shaped finite system with length
L‖ and width L⊥. It turns out that, at the percolation threshold, in the finite-size scaling limit
(L‖ → ∞, L⊥ → ∞, with r = L⊥/L‖ fixed), the crossing probability is a scale-invariant
universal function, π(r), of the aspect ratio r [1, 2].

Following the numerical work of Langlands et al [1], Cardy [2] was able to derive an
exact expression for π(r). Using the relation between percolation and the q-state Potts model
in the limit q → 1 [18] and boundary conformal field theory, he obtained the crossing
probability between two non-overlapping segments on the edge of the half-plane at criticality.
The corresponding result in the rectangular geometry was then obtained through a conformal
mapping. The non-trivial scale invariance of π(r) is linked to the vanishing of the scaling
dimension x(q) of a boundary condition changing operator of the Potts model in the percolation
limit, q → 1. Let us note that some of these results have been rigorously proved recently
[10, 11]. A related problem concerns the number of incipient spanning clusters at criticality

0305-4470/03/143995+11$30.00 © 2003 IOP Publishing Ltd Printed in the UK 3995

http://stacks.iop.org/ja/36/3995


3996 L Turban

[12–16]. Exact formulae have also been obtained in this field through conformal and Coulomb-
gas methods [13, 14].

In a recent work [19], the critical crossing probability was studied numerically for a
strongly anisotropic system, namely, directed percolation in 1 + 1 dimensions. In this case,
the crossing probability in the time direction πt is also the probability that the system of size L
remains active at time t. Anisotropic scaling [20, 21] then implies that the appropriate aspect
ratio is r = Lz/t , where z is the dynamical exponent. Here, too, it was found that, in the
finite-size scaling limit, the critical crossing probability is a scale-invariant universal function
of an effective aspect ratio which is the product of r by a non-universal constant.

In the present work we continue the examination of critical crossing probabilities in
strongly anisotropic systems by considering the case of diffusion-limited coalescence (DLC).
This is one of the many actively studied off-equilibrium systems [22–26] which yields itself to
an exact analysis [27–40]. We study the problem with periodic and free boundary conditions
using the empty interval method, or interparticle distribution function method, which is
reviewed in [36, 37].

The case of periodic boundary conditions is studied in section 2 using the standard empty
interval method for a finite discrete system [33–35]. In section 3 we use a modification of the
standard method to treat the problem with free boundary conditions. The results are discussed
in section 4.

2. Diffusion-limited coalescence with periodic boundary conditions

We consider the time evolution of DLC on a one-dimensional lattice with L sites and periodic
boundary conditions. Each site is in one of two states, either vacant or occupied by a particle
A. The dynamics is governed by the following processes

A∅
D←→ ∅A (diffusion) AA

D−→
{
A∅

∅A
(coagulation) (1)

with the same rate D. When a particle jumps with rate D on a nearest-neighbour site which is
already occupied, the two particles coalesce immediately on this site. Thus coagulation may
occur either to the left or to the right. To simplify we assume that the L sites are occupied with
probability one in the initial state at t = 0. As a consequence, the probability distribution of
the particles A is translation invariant at later time t � 0.

We study the time evolution of the system using the empty interval method [29]. Let the
symbol • (◦) denote an occupied (vacant) site. The probability for a given interval of length
n to be empty at time t,

In(t) = Prob(

n︷ ︸︸ ︷◦ ◦ · · · ◦ ◦) (2)

is translation invariant on the periodic system with uniform initial conditions. Its time evolution
involves the probability

Fn(t) = Prob(•
n︷ ︸︸ ︷◦ ◦ · · · ◦ ◦) = Prob(

n︷ ︸︸ ︷◦ ◦ · · · ◦ ◦ •) (3)

to have an empty interval of length n, either preceded or followed by an occupied site. Since

Prob(

n︷ ︸︸ ︷◦ ◦ · · · ◦ ◦ •) + Prob(

n+1︷ ︸︸ ︷◦ ◦ · · · ◦ ◦◦) = Prob(

n︷ ︸︸ ︷◦ ◦ · · · ◦ ◦) (4)

the following relation is obtained:

Fn(t) = In(t)− In+1(t). (5)
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For n = 1, L− 1, the empty interval probability satisfies the master equation

dIn(t)

dt
= 2D[Fn−1(t)− Fn(t)] = 2D[In−1(t)− 2In(t) + In+1(t)]. (6)

The gain terms correspond to processes in which a particle occupying the first site on the right
(left) of an empty interval of length n − 1 jumps to the right (left) to diffuse or coalesce on
the next site, thus leaving behind an empty interval of length n. The loss terms correspond to
processes in which a nearby particle enters an empty interval of length n either from the left
or from the right. The final form of the difference equation follows from (5).

Equation (6) has to be solved with the boundary conditions

I0(t) = 1 IL(t) = 0. (7)

The first one results from the expression of the site occupation probability, F0(t) = 1− I1(t),
the second follows from the fact that an initially non-empty system remains so at later time,
since the coalescence process leaves at least one surviving particle. With a full lattice at t = 0,
the initial condition corresponds to

In(0) = δn,0. (8)

The master equation (6) is solved through the ansatz

In(t) =
∑

q

φq(n) e−ωq t (9)

where φq(n) = uq sin(qn) + vq cos(qn) when ωq = 8D sin2(q/2) is non-vanishing. It takes
the form φ0(n) = an+ b for the zero mode, ω0 = 0, corresponding to the stationary state. The
first boundary condition in (7),

I0(t) = 1 = b +
∑
q �=0

vq e−ωq t (10)

leads to b = 1 and vq = 0 whereas the second

IL(t) = 0 = 1 + aL +
∑
q �=0

uq sin(qL) e−ωqt (11)

gives a = −1/L and sin(qL) = 0. Thus the empty interval probability can be written as [35]

In(t) = 1− n

L
+

L−1∑
k=1

ck sin

(
nkπ

L

)
exp

[
−8Dt sin2

(
kπ

2L

)]
. (12)

The stationary state solution In(∞) = 1−n/L corresponds to a single particle diffusing on the
L sites so that, a site being occupied with probability 1/L, an interval of n sites is non-empty
with probability n/L.

According to (8), at t = 0 we have
L−1∑
k=1

ck sin

(
nkπ

L

)
= n

L
− 1 n �= 0. (13)

Making use of the orthogonality relation for the sines,
L−1∑
n=1

sin

(
nkπ

L

)
sin

(
nlπ

L

)
= L

2
δk,l (k, l = 1, L− 1) (14)

in equation (13), we obtain

L

2
ck = S1(k)

L
− S2(k) (15)
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Figure 1. Variation of the scale-invariant crossing probability with the effective aspect ratio
for periodic boundary conditions. The solid line corresponds to the asymptotic expression in
equation (19).

where

S1(k) =
L−1∑
n=1

n sin

(
nkπ

L

)
= (−1)k+1 L

2
cot

(
kπ

2L

)

S2(k) =
L−1∑
n=1

sin

(
nkπ

L

)
= 1− (−1)k

2
cot

(
kπ

2L

) (16)

so that finally

In(t) = 1− n

L
− 1

L

L−1∑
k=1

cot

(
kπ

2L

)
sin

(
nkπ

L

)
exp

[
−8Dt sin2

(
kπ

2L

)]
. (17)

The mean number of particles per site (or site occupation probability), ρ(t) = 1 − I1(t),
has the well-known t−1/2 long-time behaviour in the infinite system [27, 28]. Here we are
interested in the behaviour of the crossing probability in a system with aspect ratio r = Lz/t

with a dynamical exponent z = 2 for DLC. The crossing probability in the time direction,
Pt(L, t), is the probability that the system of size L is still active at time t.

The probability that the system is in the stationary state, with the last particle on a given
site, is equal to the probability IL−1(t) that the L− 1 other sites are empty. Since there are L
possible choices for the occupied site, one obtains

Pt(L, t) = 1− LIL−1(t) = 2
L−1∑
k=1

(−1)k+1 cos2

(
kπ

2L

)
exp

[
−8Dt sin2

(
kπ

2L

)]
. (18)

In the finite-size scaling limit, this leads to the scale-invariant expression

πt(reff) = lim
L,t→∞
rfixed

Pt(L, t) = 2
∞∑

k=1

(−1)k+1 exp

(
−2k2π2

reff

)
+ O(L−2) (19)

where the crossing probability πt shown in figure 1 is a universal function of the effective
aspect ratio reff = r/D = L2/Dt .
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3. Diffusion-limited coalescence with free boundary conditions

3.1. Master equations for the empty interval probabilities

With free boundary conditions a modified version of the empty interval method is needed to
calculate the crossing probability. We define

Jm,n(t) = Prob(
1◦ ◦ · · · m◦ n+1◦ · · · ◦ L◦) (20)

as the probability to have two disconnected empty intervals with sites 1 to m and n + 1 to L
empty. Its time evolution depends on the probabilities

Gm,n(t) = Prob(
1◦ ◦ · · · ◦ m+1• n+1◦ · · · ◦ L◦)

Hm,n(t) = Prob(
1◦ ◦ · · · m◦ n• ◦ · · · ◦ L◦).

(21)

The different probabilities satisfy the relations

Prob(
1◦ ◦ · · · m◦ n+1◦ · · · ◦ L◦)

= Prob(
1◦ ◦ · · · ◦ m+1• n+1◦ · · · ◦ L◦) + Prob(

1◦ ◦ · · · ◦ m+1◦ n+1◦ · · · ◦ L◦)
= Prob(

1◦ ◦ · · · m◦ n• ◦ · · · ◦ L◦) + Prob(
1◦ ◦ · · · m◦ n◦ ◦ · · · ◦ L◦) (22)

so that we have

Gm,n(t) = Jm,n(t)− Jm+1,n(t) Hm,n(t) = Jm,n(t)− Jm,n−1(t). (23)

As before we assume that the L sites are occupied in the initial state. Thus the system contains
at least one particle at later time. The condition of non-emptiness can be written as

Jm,m(t) = 0 m = 0, L. (24)

One may note that according to the definitions given in (21), Gm,m+1(t) = Hm,m+1(t) =
Jm,m+1(t), in agreement with equations (23) and (24).

When 0 < m < n < L, the empty interval is indeed built of two disconnected parts and
its probability satisfies the master equation

dJm,n(t)

dt
= D[Gm−1,n(t) + Hm,n+1(t)−Gm,n(t)−Hm,n(t)]

= D[Jm−1,n(t)− 2Jm,n(t) + Jm+1,n(t) + Jm,n−1(t)− 2Jm,n(t) + Jm,n+1(t)] (25)

where the gain terms correspond either to a particle at m jumping to the right or a particle at
n + 1 jumping to the left and the loss terms either to a particle at m + 1 jumping to the left or
a particle at n jumping to the right. When m = 0, there is a single empty interval from site
n + 1 to site L and the master equation reads

dJ0,n(t)

dt
= D[H0,n+1(t)−H0,n(t)] = D[J0,n−1(t)− 2J0,n(t) + J0,n+1(t)]. (26)

In the same way, when n = L, we are left with a single empty interval from site 1 to site m
and the corresponding probability evolves according to

dJm,L(t)

dt
= D[Gm−1,L(t)−Gm,L(t)] = D[Jm−1,L(t)− 2Jm,L(t) + Jm+1,L(t)]. (27)

Equations (26) and (27) contain the same gain and loss terms as for the corresponding empty
intervals in equation (25). They remain valid for n = L−1 and m = 1, respectively, provided
Jm,n(t) satisfies the boundary condition

J0,L(t) = 1. (28)
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3.2. Solution of the eigenvalue problem

Looking for the solutions under the form

Jm,n(t) =
∑

ω

φω(m, n) e−ωt (29)

the master equations (25)–(27) lead to an eigenvalue problem which has been discussed in
detail in [34].

Since 0 � m < n � L, there is a total of L(L + 1)/2 modes. According to (24), φω(m, n)

is an antisymmetric combination of eigenfunctions of the second difference operators involved
in (25)–(27). The problem is invariant under space reflection so that φω(m, n) can be chosen
as an eigenfunction of the space reflection operator

P : (m, n) �→ (L− n,L −m). (30)

Three types of solutions are obtained [34]:

• The stationary solution

Jm,n(∞) = φ0(m, n) = n−m

L
(31)

which is an eigenstate of P with eigenvalue +1. Its expression follows from the fact
that the zero-mode eigenfunction is linear in m and n and has to satisfy the boundary
conditions (24) and (28). The first condition leads to the form φ0(m, n) = c(n−m) and
the second gives c = 1/L. It has also a simple physical interpretation: since a single
particle remains in the stationary state, a site is occupied with probability 1/L. Thus the
probability to have L− n + m empty sites, from 1 to m and from n + 1 to L, is given by
1− (L− n + m)/L.

One may note that with J0,L(∞) = 1, the time-dependent part of Jm,n(t) has to satisfy
the boundary condition

J0,L(t)− J0,L(∞) = 0 (32)

according to (28).
• The 2(L− 1) one-fermion excitations

φ+
k (m, n) = 1√

L

[
sin

(
mkπ

L

)
− sin

(
nkπ

L

)]

φ−k (m, n) = 1√
L

[(
1− 2n

L

)
sin

(
mkπ

L

)
−

(
1− 2m

L

)
sin

(
nkπ

L

)] (33)

with k = 1, L − 1. These functions are antisymmetric eigenstates of P such that
Pφ±k = ±(−1)kφ±k . They vanish when m = 0 and n = L in agreement with (32).
The excitation energies are given by

ωk = 4D sin2

(
kπ

2L

)
. (34)

Actually the odd eigenstate of P, φ−k (m, n), is the combination of a one-fermion excitation
with a zero mode.
• The (L− 1)(L− 2)/2 two-fermion excitations

φkl(m, n) = 2

L

[
sin

(
mkπ

L

)
sin

(
nlπ

L

)
− sin

(
mlπ

L

)
sin

(
nkπ

L

)]
(35)
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with 1 � k < l � L− 1. These antisymmetric two-particle states are eigenstates of P with
eigenvalues (−1)k+l+1 and they satisfy the boundary condition (32). The corresponding
eigenvalues read

ωkl = ωk + ωl = 4D

[
sin2

(
kπ

2L

)
+ sin2

(
lπ

2L

)]
. (36)

The solution satisfying the boundary conditions can be written as the expansion

Jm,n(t) = n−m

L
+

L−1∑
k=1

[∑
α=±

aα
k φα

k (m, n)

]
e−ωkt +

L−2∑
k=1

L−1∑
l=k+1

bklφkl(m, n) e−ωkl t . (37)

All the sites are occupied with probability one in the initial state, so that

Jm,n(0) = δm,0δn,L. (38)

Thus, for 0 < m < n < L, we have

−φ0(m, n) =
L−1∑
k=1

∑
α=±

aα
k φα

k (m, n) +
L−2∑
k=1

L−1∑
l=k+1

bklφkl(m, n). (39)

The coefficients of the eigenvalue expansion can be determined by making use of the
orthogonality relations between the different eigenfunctions. Following [34], let us define
surface and bulk scalar products for arbitrary functions f and g as

〈f |g〉s =
L−1∑
m=1

f (m,L)g(m,L) +
L−1∑
n=1

f (0, n)g(0, n)

〈f |g〉b =
L−1∑
n=2

n−1∑
m=1

f (m, n)g(m, n).

(40)

It turns out that the one-fermion eigenfunctions in (33) are orthogonal for the surface scalar
product whereas the two-fermion eigenfunctions in (35) are orthogonal for the bulk one:〈

φα
k

∣∣φβ

k′
〉
s = δkk′δαβ (k, k′ = 1, L− 1; α, β = ±)

〈φkl |φk′l′ 〉b = δkk′δll′ (0 < k < l < L; 0 < k′ < l′ < L).
(41)

Thus, taking appropriate scalar products in (39), one obtains

a+
k = −

〈
φ+

k

∣∣φ0
〉
s =

2S1(k)

L3/2
− S2(k)

L1/2
= −1 + (−1)k

2
√

L
cot

(
kπ

2L

)

a−k = −〈φ−k |φ0〉s = S2(k)√
L
= 1− (−1)k

2
√

L
cot

(
kπ

2L

)

bkl = −〈φkl|φ0〉b −
L−1∑
k′=1

∑
α=±

aα
k′
〈
φkl

∣∣φα
k′
〉
b = 〈φkl |φ0〉b

= (−1)k − (−1)l

2L
cot

(
kπ

2L

)
cot

(
lπ

2L

)
.

(42)

The relation
L−1∑
k′=1

φ±k′ (m, n)
〈
φ±k′

∣∣φ0
〉
s = φ0(m, n) (43)

has been used in the calculation of bkl . The final form of Jm,n(t) satisfying the initial and
boundary conditions follows from (37) and (42).
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3.3. Crossing probability

Since Jn−1,n(t) gives the probability that all the sites are empty, except site n which is occupied
by the last particle, the probability that the system is still active at time t is given by

Pt(L, t) = 1−
L∑

n=1

Jn−1,n(t) = −
L−1∑
k=1

[∑
α=±

aα
k

L∑
n=1

φα
k (n− 1, n)

]
e−ωk t

−
L−2∑
k=1

L−1∑
l=k+1

bkl

[
L∑

n=1

φkl(n− 1, n)

]
e−ωkl t . (44)

Straightforward but lengthy calculations lead to the following results for the different sums
over n:

L∑
n=1

φ+
k (n− 1, n) = 0

L∑
n=1

φ−k (n− 1, n) = −2
1− (−1)k

L3/2
cot

(
kπ

2L

)
L∑

n=1

φkl(n− 1, n) = 1− (−1)k+l

L

sin
(

kπ
L

)
sin

(
lπ
L

)
sin

[
(k−l)π

2L

]
sin

[
(k+l)π

2L

] .

(45)

Thus we obtain

Pt(L, t) = 4

L2

L−1∑
k=1
k odd

cot2
(

kπ

2L

)
cot2

(
lπ

2L

)
exp

[
−4Dt sin2

(
kπ

2L

)]

− 8

L2

L−2∑
k=1

L−1∑
l=k+1
k+l odd

(−1)k
cos2

(
kπ
2L

)
cos2

(
lπ
2L

)
sin

[
(k−l)π

2L

]
sin

[
(k+l)π

2L

]
× exp

{
−4Dt

[
sin2

(
kπ

2L

)
+ sin2

(
lπ

2L

)]}
. (46)

In the finite-size scaling limit, the crossing probability displays the scale-invariant dependence
on the effective aspect ratio reff = L2/Dt and reads

πt(reff) = lim
L,t→∞
r fixed

Pt (L, t)

= 16

π2

∞∑
k=1
k odd

1

k2
exp

(
−k2π2

reff

)
− 32

π2

∞∑
k=1

∞∑
l=k+1
k+l odd

(−1)k

k2 − l2

× exp

[
− (k2 + l2)π2

reff

]
+ O(L−2). (47)

The rapid convergence to the scaling limit is shown in figure 2.

4. Discussion

We have studied DLC at the critical point where the particle density and other quantities display
power laws in the thermodynamic limit. The problem can be made off-critical by introducing a
birth process with rate �, corresponding to the back reaction of the coagulation process in (1).
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Figure 2. Variation of the scale-invariant crossing probability with the effective aspect ratio
for free boundary conditions. The solid line corresponds to the asymptotic expression in
equation (47).

The system being strongly anisotropic, under a change of the length scale by a factor b,
the length transforms as L′ = L/b whereas the time transformation, t ′ = t/bz, involves the
anisotropy or dynamical exponent z [20]. For a scale-invariant crossing probability one
obtains

Pt (L, t,�) = Pt

(
L

b
,

t

bz
, b1/ν�

)
(48)

where ν is the exponent of the correlation length, ξ = ξ̂�−ν , which diverges at the critical
point, � = 0. Taking b = �−ν leads to

Pt (L, t,�) = Pt

(
L

�−ν
,

t

�−zν
, 1

)
= f

(
L

ξ
,

t

τ

)
(49)

where we introduced the relaxation time, τ = τ̂�−zν . Both the correlation length and the
relaxation time contain a non-universal amplitude, ξ̂ and τ̂ , respectively. In equation (49),
f (x, y) is a universal scaling function of its dimensionless variables, x = L/ξ and y = t/τ .
The finite-size scaling limit at criticality amounts to taking � = 0 and b = L in (48), which
gives

Pt (L, t, 0) = Pt

(
1,

t

Lz
, 0

)
= πt

(
c
Lz

t

)
. (50)

Thus the crossing probability πt is a scale-invariant universal function of the effective aspect
ratio cr . The non-universal amplitude c depends on the choice of the length and time units.
It can be expressed as a function of the non-universal correlation length and relaxation time
amplitudes [21] by comparing (50) with (49). Since r appears through the dimensionless ratio
xz/y, one obtains

cr = (L/ξ)z

t/τ
= τ̂

ξ̂ z
r (51)

and c = τ̂ /ξ̂ z which is equal to D−1 in our case.
We have shown with the example of DLC that the crossing probability πt is a scale-

invariant function of the effective aspect ratio for different types of boundary conditions. This
function is expected to be universal as in the case of directed percolation [19]. An indication of
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the universality of πt can be found in [35] where a birth process of the form A ∅ A
2λD−→ AAA

was added to (1). The problem stays in the same universality class and remains exactly
solvable through the empty interval method for all values of λ. It turns out that In(t) is only
modified by terms of higher order in 1/L which disappear in the finite-size scaling limit. One
could also check the universality of πt on the diffusion–annihilation problem, which has been
shown to belong to the same universality class as DLC, through a similarity transformation
in the quantum Hamiltonian formulation of the master equation [38–40]. Another possibility
would be to verify the independence of the initial conditions by taking, for example, a site
occupation probability smaller than the one in the initial state.

Finally, let us mention that a recent generalization of local scale invariance for strongly
anisotropic systems [41, 42] leaves hope for directly obtaining the crossing probability
formulae in a given universality class, as in isotropic systems.
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